

Tetrahedron Letters 43 (2002) 6911-6914

Stereoselective formation of optically active 2-oxy-1,3-oxazolidin-4-ones and an efficient synthesis of optically active secondary 2-pyrrolidones

Yoji Omata,^a Akikazu Kakehi,^b Masashi Shirai^c and Akio Kamimura^{a,*}

^aDepartment of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Ube 755-8611, Japan ^bDepartment of Chemistry and Material Engineering, Shinshu University, Nagano 380-8553, Japan ^cUbe Laboratory, Ube Industries Ltd, Ube 755-8633, Japan

Received 18 July 2002; accepted 2 August 2002

Abstract—Treatment of (-)-O-acyllactamides or mandelamides with TBSOTf in the presence of base gives optically active 2-oxy-1,3-oxazolidin-4-ones stereoselectively, which serve as useful precursors for the preparation of optically active secondary 2-pyrrolidones via radical cyclization and subsequent one-step removal of mandelic acid. © 2002 Elsevier Science Ltd. All rights reserved.

Acetals, or their nitrogen analogues, are recognized as a valuable protective group for carbonyl functions¹ and are often used as a powerful device for asymmetric synthesis.² Orthoesters and their equivalents,³ on the other hand, have rarely been used in a similar manner⁴ due to their lack of sufficient stability on contact with acidic media, or lack of convenient methods to prepare them in a stereochemically controlled way.⁵ Radical cyclization has been recognized as a good tool to construct cyclic compounds.⁶ Due to the planar structure of the amide linkage, however, preparation of secondary 2-pyrrolidone with the radical strategy is not usually easy; simple reduction by Bu₃SnH competes.⁷ To achieve efficient radical cyclization, introduction of a temporary N-substituent or a sterically demanded tether was effective,^{8,9} although its removal in the later stage is required.¹⁰ The previously reported asymmetric induction for this cyclization remained at a moderate level.8 Here we report the first practical and stereoselective synthesis of an optically active nitrogen analogue of cyclic orthoester and their use for a new efficient preparation of optically active secondary 2pyrrolidones.

Preparation of starting material **3** was achieved by the coupling reactions of lactic or mandelic acid with

amines and acids in the presence of EDCI, and desired O-acyl-lactamide or -mandelamides were isolated in good yields (Scheme 1). Exposure of **3a** to TBSOTf in the presence of 2,6-lutidine at 0°C, for example, resulted in the rapid disappearance of **3a** and a new compound **4A-a** was formed in a spot-to-spot manner. A 93% yield of compound **4a** was obtained after purification through usual flash chromatography. The results are summarized in Table 1.

To our surprise, **4a** was obtained as an almost single isomer (entry 1). Other mandelic amides **3b-i** also gave

Scheme 1. Reagents and conditions: (i) R^1NH_2 , EDCI, DMAP; (ii) R_2CO_2H , EDCI, DMAP; (iii) TBSOTf, 2,6-lutidine, CH_2Cl_2 , 0°C.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01632-5

Keywords: chiral auxiliaries; acetals; radical cyclization; heterocycles; ring constructions.

^{*} Corresponding author. Fax: (81) 836-85-9201; e-mail: ak10@yamaguchi-u.ac.jp

Entry	R	R ¹	R ²	3 yield (%) ^a	$[\alpha]_{\mathrm{D}}$	4 yield (%) ^a	$\mathbf{A}/\mathbf{B}^{\mathbf{b}}$	$[\alpha]_{D}^{c}$
1	Me	1-C ₁₀ H ₇ CH ₂ -	Me	3a ; 91	-81.1	4a ; 93	99/1	-39.0
2	Ph	Bn	Me	3b ; 79	+115.4	4b ; 89	>99/1	+57.2
3	Ph	Bn	Ph	3c ; 95	+57.8	4c ; 82	>99/1	-13.5
4	Ph	Bn	<i>i</i> -Pr	3d ; 98	+99.8	4d ; 97	>99/1	+42.4
5	Ph	CH ₂ =CHCH ₂ -	Me	3e ; 67	+57.8	4e ; 92	96/4	-13.5
6	Ph	CH ₂ =CHCH ₂ -	CICH ₂	3f ; 51	+93.1	4f ; 97	69/31	+15.6
7	Ph	CH ₂ =CHCH ₂ -	BrCH ₂	3g ; 90	+78.9	4 g; 87	63/37	+20.4
8	Ph	CH ₂ =CHCH ₂ -	PhSeCH ₂	3h ; 85	+46.5	4h ; 88	84/16	+51.1
9	Ph	PhCH=CHCH2-	PhSeCH ₂	3i ; 85	+64.8	4i ; 92	84/16	+35.0

 Table 1. Preparation of optically active 2-oxy-1,3-oxazolidin-4-ones 4

^a Isolated yield.

^b Determined by HPLC analyses (Chiral Pak-AD).

^c Specific rotations for major isomers.

good yields of corresponding 4 (entries 2-9). The stereoselectivity of the reaction depended on the substituent on the O-acyl moiety. Acetate derivatives 3b and 3e, for example, afforded 4b and 4e in a stereoselective manner and diastereomers 4A were formed as the sole product in each reaction (entries 2 and 5). The present high stereoselectivity was also observed in the conversion of benzoate 3c and isobutyrate 3d (entries 3 and 4). Chloroacetate 3f and bromoacetate 3g, on the other hand, underwent the formation of a mixture of the two diastereomers in about a 2:1 ratio (entries 6 and 7). Use of phenylselenoacetate **3h** improved the selectivity to 84/16 (entry 8). The two isomers, 4A-h and 4B-h, were separated by careful flash chromatographic treatment (silica gel/hexane-ether, 35:1 v/v). The N-cinnamyl derivative 4i was prepared in a similar manner (entry 9).

The structure and configuration of 4 were determined in the following way. In a 13 C NMR spectrum for 4a, only one carbonyl peak was observed so that one of the two carbonyl groups in 3a had been converted to another functional group during the transformation. A new peak that appeared around 110 ppm suggested that 4a contained an orthoester-type carbon. We assumed 4a had 2-oxy-1,3-oxazolidin-4-one structure, which was confirmed by X-ray crystallographic analysis.¹¹ Configuration between C2 and C5 was also determined to be 2*S*,5*S* on the basis of the X-ray analysis. An NOE experiment for 4a indicated that 5% of the signal enhancement occurred when the H5 was irradiated and a similar enhancement was also observed in other 4 (Scheme 2). In this way, their configuration was determined.

We next examined radical cyclization to convert 4 into bicyclic ring system 5 which will be a precursor of 4-substituted secondary 2-pyrrolidone 6. Treatment of 4A-h with Bu₃SnH at 0°C resulted in the smooth formation of bicyclic lactam 5a in a 76% yield (Scheme 3). No simply reduced product 4e was observed in the reaction mixture. This was in contrast to the reaction of *N*-allyl-*O*-(phenylseleno)acetylmandelamide 3h that only gave the deselenated product 3e quantitatively. The stereoselectivity of the cyclization was 85:15. Cinnamyl amide 4A-i gave a 92% yield of 5b. To remove the TBS group, **5a** was treated with TBAF. To our surprise, both of the C–N and C–O bonds in **5a** were simultaneously cleaved and the desired secondary 2-pyrrolidone **6a** was isolated in an 84% yield. The optical purity of **6a** was determined to be 70% ee by a chiral HPLC analysis after the conversion to its *N*-Boc derivative (84%). The positive specific rotation of **6a** clearly indicated that the absolute configuration at C4 was R.¹² It should be remarked that mandelic acid was recovered from the reaction mixture with a 72% yield. The recovered mandelic acid showed a positive specific rotation of +117.2°, that indicated no significant loss of optical purity had occurred during the presence of chemical transformation. It should be remarked that this method provides a short preparation of chiral

Scheme 2. NOE experiments for 4A-a and 4A-b.

Scheme 3. *Reagents and conditions*: (i) Bu₃SnH, AIBN, toluene, 0°C, hv; (ii) Bu₃SnH, AIBN, toluene, 110°C; (iii) TBAF, THF.

Scheme 4. Reagents and conditions: (i) TBSOTf, 2,6-lutidine, 0°C; (ii) Bu₃SnH, AIBN, toluene, 110°C; (iii) TBAF, THF.

monosubstituted secondary 2-pyrrolidones via radical cyclization strategy; neither a temporary N-protective group¹⁰ nor an α -substituent that affords chiral induction are required.⁸ Optically active 4-benzyl-2pyrrolidone **6b** was obtained in a similar manner. With this procedure in hand, 4,5-disubstituted-2-pyrrolidone 6c was examined (Scheme 4). Although а diastereomeric mixture was formed during the conversion to 4 and 5, desired (4R,5S)-2-pyrrolidone 6c was isolated as a single isomer with 90% ee;¹³ no separation of diastereomers in 4 and 5 was needed. Thus, the stereoselectivity of the radical cyclization step is quite high.6c

In conclusion, we have found a simple and stereoselective method to convert lactic or mandelic amides to 2-oxy-1,3-oxazolidin-4-ones, which serve as a useful precursor to prepare optically active chiral secondary 2-pyrrolidones. This method provides the first use of mandelic acid as a chiral orthester-equivalent auxiliary. Each step of the procedure takes place under mild and neutral conditions, and products are isolated in good yields in a stereoselective manner. Recovered mandelic acid maintained its optical purity so that it opens a way for recycled use. Further investigation and applications are now underway in our laboratory.

Acknowledgements

The present work was partially supported by the Grantin-Aid (11640536) from the Ministry of Education, Science, Sports and Culture, Japan. Financial support from Sasakawa Scientific Research Grant (to Y.O.) is also appreciated.

References

 (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons, 1999; (b) Kocienski, P. J. Protective Groups; Thieme: Stuttgart, 1994.

- (a) Bennani, Y. L.; Hanessian, S. Chem. Rev. 1997, 97, 3161; (b) Ager, D.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835; (c) Blaser, H.-U. Chem. Rev. 1992, 92, 935; (d) Romo, D.; Meyers, A. I. Tetrahedron 1991, 47, 9503; (e) Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc. 1991, 113, 8089; (f) Alexakis, A.; Mangeney, P. Tetrahedron: Asymmetry 1990, 1, 477; (g) Seebach, D.; Zimmermann, J.; Gysel, U.; Ziegler, R.; Ha, T.-K. J. Am. Chem. Soc. 1988, 110, 4763; (h) Seebach, D.; Imwinkelried, R.; Weber, T. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer: Berlin, 1986; p. 125.
- (a) DeWolfe, R. H. Synthesis 1974, 153; (b) DeWolfe, R. H. Carboxylic Ortho Acid Derivatives; Academic Express: New York, 1970.
- (a) Dubé, D.; Deschênes, D.; Tweddell, T.; Gagnon, H.; Carlini, R. *Tetrahedron Lett.* **1995**, *36*, 1827; (b) Longobardo, L.; Mobbili, G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. *Tetrahedron* **1992**, *48*, 1299; (c) Basile, T.; Longogardo, L.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Chem. Soc., Chem. Commun. **1991**, 391.
- (a) Hiranuma, S.; Kanie, O.; Wong, C.-H. Tetrahedron Lett. 1999, 40, 6423; (b) Charrette, A. B.; Chua, P. Tetrahedron Lett. 1997, 38, 8499; (c) Wipf, P.; Xu, W.; Kim, H.; Takahashi, H. Tetrahedron 1994, 53, 16575; (d) Wipf, P.; Xu, W. J. Org. Chem. 1993, 58, 5880; (e) Waldmüller, D.; Braun, M.; Steigel, A. Synlett 1991, 160; (f) Corey, E. J.; Raju, N. Tetrahedron Lett. 1983, 24, 5571; (g) Boss, G.; Gerlach, H. Helv. Chim. Acta 1983, 66, 2294.
- For recent review, see: (a) McCarroll, A. J.; Walton, J. C. J. Chem. Soc., Perkin Trans. 1 2001, 3215; (b) Bowman, W. R.; Cloonan, M. O.; Krintel, S. L. J. Chem. Soc., Perkin Trans. 1 2001, 2885; (c) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical Reactions; VCH Verlagsgesellschaft mbH.; Weinheim, 1996; (d) Curran, D. P. In Comprehensive Organic Synthesis; Trost, B. M.; Flemming, I.; Semmelhack, M. F., Eds.; Pergamon: Oxford, 1991; Vol. 4, Chapter 4.2; (e) Curran, D. P. Synthesis 1988, 417–439; (f) Curran, D. P. Synthesis 1988, 489–513; (g) Giese, B. Radicals in Organic Synthesis. Formation of Carbon–Carbon Bonds; Pergamon: Oxford, 1986.
- 7. Curran, D. P.; Tamine, J. J. Org. Chem. 1991, 56, 2746.
- (a) Parsons, A. F.; Pettifer, R. M. J. Chem. Soc., Perkin Trans. 1 1998, 651; (b) Baker, S. R.; Burton, K. I.; Parsons, A. F.; Pons, J.-F.; Wilson, M. J. Chem. Soc., Perkin Trans. 1 1999, 427; (c) Bryans, J. S.; Large, J. M.; Parsons, A. F. J. Chem. Soc., Perkin Trans. 1 1999, 2897; 2905; (d) Gilbert, B. C.; Kalz, W.; Lindsay, C. I.; McGrail, P. T.; Parsons, A. F.; Whittaker, D. T. E. J. Chem. Soc., Perkin Trans. 1 2000, 1187; (e) Bryans, J. S.; Large, J. M.; Parsons, A. F. Tetrahedron Lett. 1999, 40, 3487; (f) Besev, M.; Engman, L. Org. Lett. 2000, 2, 1589.
- (a) Nagashima, H.; Ozaki, N.; Seki, K.; Ishii, M.; Itoh, K. J. Org. Chem. 1989, 54, 4497; (b) Ishibashi, H.; So, T. S.; Okochi, K.; Sato, T.; Nakamura, N.; Nakatani, H.; Ikeda, M. J. Org. Chem. 1991, 56, 95; (c) Nagashima, H.; Wakamatsu, H.; Ozaki, N.; Ishii, T.; Watanabe, M.; Tajima, T.; Itoh, K. J. Org. Chem. 1992, 57, 1682; (d) Nagashima, H.; Ozaki, N.; Ishii, M.; Seki, K.; Washiyama, M.; Itoh, K. J. Org. Chem. 1993, 58, 464.
- 10. Ghelfi, F.; Parsons, A. F. J. Org. Chem. 2000, 65, 6249.

- 11. Crystallographic data for the structure of **4a** have been deposited with Cambridge Crystallographic Data Centre (deposit No. 154167).
- (a) Baggiolini, E.; Berscheid, H. G.; Bozzato, G.; Cavalieri, E.; Schaffner, K.; Jeger, O. *Helv. Chim. Acta* 1971, 54, 429; (b) Meyers, A. I.; Snyder, L. *J. Org. Chem.* 1993, 58, 36; (c) Langlois, N.; Dahurron, N.; Wang, H.-S.

Tetrahedron **1996**, *52*, 15117; (d) Baggiolini, E.; Berscheid, H. G.; Barluenga, J.; Aznar, F.; Ribas, C.; Valdés, C. *J. Org. Chem.* **1997**, *62*, 6746.

13. Compound **3j** was prepared from (*S*)-L-phenylalanine with 90% ee. *trans*-Configuration in **6c** between C4 and C5 was determined by an NOE experiment. Details will be reported in due course.