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Abstract—Treatment of (—)-O-acyllactamides or mandelamides with TBSOTSf in the presence of base gives optically active
2-oxy-1,3-oxazolidin-4-ones stereoselectively, which serve as useful precursors for the preparation of optically active secondary
2-pyrrolidones via radical cyclization and subsequent one-step removal of mandelic acid. © 2002 Elsevier Science Ltd. All rights

reserved.

Acetals, or their nitrogen analogues, are recognized as a
valuable protective group for carbonyl functions' and
are often used as a powerful device for asymmetric
synthesis.? Orthoesters and their equivalents,® on the
other hand, have rarely been used in a similar manner*
due to their lack of sufficient stability on contact with
acidic media, or lack of convenient methods to prepare
them in a stereochemically controlled way.® Radical
cyclization has been recognized as a good tool to
construct cyclic compounds.® Due to the planar struc-
ture of the amide linkage, however, preparation of
secondary 2-pyrrolidone with the radical strategy is not
usually easy; simple reduction by Bu;SnH competes.’
To achieve efficient radical cyclization, introduction of
a temporary N-substituent or a sterically demanded
tether was effective,®® although its removal in the later
stage is required.'® The previously reported asymmetric
induction for this cyclization remained at a moderate
level.® Here we report the first practical and stereoselec-
tive synthesis of an optically active nitrogen analogue
of cyclic orthoester and their use for a new efficient
preparation of optically active secondary 2-
pyrrolidones.

Preparation of starting material 3 was achieved by the
coupling reactions of lactic or mandelic acid with
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amines and acids in the presence of EDCI, and desired
O-acyl-lactamide or -mandelamides were isolated in
good yields (Scheme 1). Exposure of 3a to TBSOTS in
the presence of 2,6-lutidine at 0°C, for example,
resulted in the rapid disappearance of 3a and a new
compound 4A-a was formed in a spot-to-spot manner.
A 93% yield of compound 4a was obtained after purifi-
cation through usual flash chromatography. The results
are summarized in Table 1.

To our surprise, 4a was obtained as an almost single
isomer (entry 1). Other mandelic amides 3b-i also gave
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Scheme 1. Reagents and conditions: (i) R'NH,, EDCI,
DMAP; (ii) R,CO,H, EDCI, DMAP; (iii) TBSOTf, 2.,6-
lutidine, CH,Cl,, 0°C.
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Table 1. Preparation of optically active 2-oxy-1,3-oxazolidin-4-ones 4

Entry R R! R2 3 yield (%) []p 4 yield (%) A/B® []pe

1 Me 1-C,,H,CH,- Me 3a; 91 —81.1 4a; 93 99/1 —39.0
2 Ph Bn Me 3b; 79 +115.4 4b; 89 >99/1 +57.2
3 Ph Bn Ph 3¢; 95 +57.8 4c; 82 >99/1 —135
4 Ph Bn i-Pr 3d; 98 +99.8 4d; 97 >99/1 +42.4
5 Ph CH,=CHCH.- Me 3e; 67 +57.8 4e; 92 96/4 —135
6 Ph CH,=CHCH.,- CICH, 3f: 51 +93.1 4f: 97 69/31 +15.6
7 Ph CH,=CHCH.- BrCH, 3g; 90 +789 4g; 87 63/37 +20.4
8 Ph CH,=CHCH.,- PhSeCH, 3h; 85 +46.5 4h; 88 84/16 +51.1
9 Ph PhCH=CHCH,- PhSeCH, 3i; 85 +64.8 4i; 92 84/16 +35.0

4 Isolated yield.
® Determined by HPLC analyses (Chiral Pak-AD).
¢ Specific rotations for major isomers.

good yields of corresponding 4 (entries 2-9). The
stereoselectivity of the reaction depended on the sub-
stituent on the O-acyl moiety. Acetate derivatives 3b
and 3e, for example, afforded 4b and 4e in a stereose-
lective manner and diasterecomers 4A were formed as
the sole product in each reaction (entries 2 and 5). The
present high stereoselectivity was also observed in the
conversion of benzoate 3¢ and isobutyrate 3d (entries 3
and 4). Chloroacetate 3f and bromoacetate 3g, on the
other hand, underwent the formation of a mixture of
the two diastereomers in about a 2:1 ratio (entries 6 and
7). Use of phenylselenoacetate 3h improved the selectiv-
ity to 84/16 (entry 8). The two isomers, 4A-h and 4B-h,
were separated by careful flash chromatographic treat-
ment (silica gel/hexane—ether, 35:1 v/v). The N-cin-
namyl derivative 4i was prepared in a similar manner
(entry 9).

The structure and configuration of 4 were determined
in the following way. In a *C NMR spectrum for 4a,
only one carbonyl peak was observed so that one of the
two carbonyl groups in 3a had been converted to
another functional group during the transformation. A
new peak that appeared around 110 ppm suggested that
4a contained an orthoester-type carbon. We assumed
4a had 2-oxy-1,3-oxazolidin-4-one structure, which was
confirmed by X-ray crystallographic analysis.!!
Configuration between C2 and C5 was also determined
to be 25,55 on the basis of the X-ray analysis. An NOE
experiment for 4a indicated that 5% of the signal
enhancement occurred when the HS was irradiated and
a similar enhancement was also observed in other 4
(Scheme 2). In this way, their configuration was
determined.

We next examined radical cyclization to convert 4 into
bicyclic ring system 5 which will be a precursor of
4-substituted secondary 2-pyrrolidone 6. Treatment of
4A-h with Bu;SnH at 0°C resulted in the smooth for-
mation of bicyclic lactam 5a in a 76% yield (Scheme 3).
No simply reduced product 4e was observed in the
reaction mixture. This was in contrast to the reaction of
N-allyl-O-(phenylseleno)acetylmandelamide 3h that
only gave the deselenated product 3e quantitatively.
The stereoselectivity of the cyclization was 85:15. Cin-
namyl amide 4A-i gave a 92% yield of 5b.

To remove the TBS group, 5a was treated with TBAF.
To our surprise, both of the C-N and C-O bonds in 5a
were simultaneously cleaved and the desired secondary
2-pyrrolidone 6a was isolated in an 84% yield. The
optical purity of 6a was determined to be 70% ee by a
chiral HPLC analysis after the conversion to its N-Boc
derivative (84%). The positive specific rotation of 6a
clearly indicated that the absolute configuration at C4
was R.!2 It should be remarked that mandelic acid was
recovered from the reaction mixture with a 72% yield.
The recovered mandelic acid showed a positive specific
rotation of +117.2°, that indicated no significant loss of
optical purity had occurred during the presence of
chemical transformation. It should be remarked that
this method provides a short preparation of chiral
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Scheme 3. Reagents and conditions: (i) Bu;SnH, AIBN, tolu-
ene, 0°C, hv; (ii)) Bu;SnH, AIBN, toluene, 110°C; (iii) TBAF,
THF.
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Scheme 4. Reagents and conditions: (i) TBSOTT, 2,6-lutidine,
0°C; (i) BusSnH, AIBN, toluene, 110°C; (iii) TBAF, THF.

monosubstituted secondary 2-pyrrolidones via radical
cyclization strategy; neither a temporary N-protective
group'® nor an a-substituent that affords chiral induc-
tion are required.® Optically active 4-benzyl-2-
pyrrolidone 6b was obtained in a similar manner. With
this procedure in hand, 4,5-disubstituted-2-pyrrolidone
6¢c was examined (Scheme 4). Although a
diastereomeric mixture was formed during the conver-
sion to 4 and 5, desired (4R,5S)-2-pyrrolidone 6¢ was
isolated as a single isomer with 90% ee;!* no separation
of diastereomers in 4 and 5 was needed. Thus, the
stereoselectivity of the radical cyclization step is quite
high.®

In conclusion, we have found a simple and stereoselec-
tive method to convert lactic or mandelic amides to
2-oxy-1,3-oxazolidin-4-ones, which serve as a useful
precursor to prepare optically active chiral secondary
2-pyrrolidones. This method provides the first use of
mandelic acid as a chiral orthester-equivalent auxiliary.
Each step of the procedure takes place under mild and
neutral conditions, and products are isolated in good
yields in a stereoselective manner. Recovered mandelic
acid maintained its optical purity so that it opens a way
for recycled use. Further investigation and applications
are now underway in our laboratory.
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Compound 3j was prepared from (S)-L-phenylalanine
with 90% ee. trans-Configuration in 6c between C4 and
C5 was determined by an NOE experiment. Details will
be reported in due course.
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